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Tension (T) is constant, so it can be divided out:
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The derivatives need to be distributed, because Width (W) is dependent on x:
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The matrix of the fourth derivative, H, is symmetric and Hermitian. Therefore

all its eigenfunctions are orthogonal.
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The rest of the expression can be notated as H', a non-symmetric matrix.
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Given the values of 2 and w, it’s now possible to solve the homogenous equation
for the coeflicients of the linear combination of functions which define y.



