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Abstract: In particle physics experiments, identifying the types of particles measured in a detector
is essential for the accurate reconstruction of event data. At Thomas Jefferson National Accelerator
Facility (Jefferson Lab), the GlueX experiment performs particle identification (PID) by setting
specific thresholds, known as cuts, on the kinematic properties of tracks and showers obtained from
detector hits. Our research aims to enhance this cut-based method by employing machine learning
(ML) through neural networks (NN). This approach offers an exciting opportunity to uncover
underlying correlations among PID variables in the reconstructed kinematic data. Our study
illustrates that a NN can identify charged and neutral particles in Monte Carlo (MC) simulated
GlueX data with significantly improved precision over the current cut-based PID method.
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1 Introduction

Since the 1970s, there has been significant interest in understanding the mechanism behind the
confinement of quarks and gluons within quantum chromodynamics (QCD). The confinement
mechanism describes how quarks and gluons, which carry color charge, are permanently bound
together to form protons, neutrons, and other color-neutral hadrons. This phenomenon prevents
quarks and gluons from existing as free particles, ensuring they are always observed within larger,
composite color-neutral particles.

The constituent quark model (CQM) [1] treats the simplest hadron configuration, a meson, as
a bound quark-antiquark (𝑞𝑞) state grouped into SU(N) flavor multiplets. While the CQM provides
a natural framework to classify mesons, it is unable to explain quark confinement since it does not
require gluons, the mediator of the strong force, which lattice QCD [2] and the Flux Tube Model [3]
deems to play an essential role in QCD. The Flux Tube Model for hadrons was extracted from the
strong-coupling Hamiltonian lattice formulation of QCD and contains within it the quark model.
This model explains confinement and allows for pure gluon states, hybrids (particles having both
quark and gluonic degrees of freedom), and other exotics (particles with quantum numbers not
permitted by the CQM). Hybrid mesons (𝑞𝑞𝑔) can possess quantum numbers (𝐽𝑃𝐶) not possible
from the CQM (𝑞𝑞); therefore, the discovery of these exotic hybrid mesons would be confirmation
of the Flux Tube Model.
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The GlueX experiment located in Hall D at Jefferson Lab studies the gluon field inside the
meson (𝑞𝑞𝑔) through the mapping of the spectrum of exotic hybrid mesons with masses up to 2.5
𝐺𝑒𝑉{𝑐2. Identifying these mesons requires knowledge of their production mechanism, identification
of their 𝐽𝑃𝐶 , and measurements of their decay modes. This is accomplished through the partial
wave analysis (PWA) of exclusive final states. This technique depends in part upon having high
statistics, linear polarization of the incident photon beam, excellent measurement resolution, full
acceptance in decay angles, and correct decay particle identification (PID).

Particle identification (PID) in the GlueX detector [4], depicted in Figure 1, is accomplished
using seven detector systems:

• SC: A start counter consisting of a cylindrical array of 40 scintillator paddles

• TOF: A forward time-of-flight wall of 44 vertical and 44 horizontal scintillator paddles

• BCAL: A cylindrical geometry barrel calorimeter with alternating layers of lead and scintil-
lating fiber

• FCAL: A forward lead-glass block calorimeter with a planar geometry orthogonal to the
photon beam axis

• CDC: A central drift chamber detector consisting of layers (strung in axial and stereo con-
figurations) of cathode straw tubes, each containing an anode wire and filled with a mixture
of argon and CO2 gas

• FDC: A forward drift chamber detector consisting of 24 planar drift chambers with cathode
strip and wire readouts, and filled with a mixture of argon and CO2 gas

• DIRC: A Detection of Internally Reflected Cherenkov light detector used for forward region
PID

The SC envelopes the target cell covering „90% of 4𝜋 solid angle and is the first detector to
measure particles emitted from interactions in the target. Due to its proximity to the target cell, the
SC provides a timing signal relatively independent of particle type and trajectory and provides a
fast signal that is used in the level-1 trigger for the experiment. The thin scintillator SC is used to
identify the 4 ns accelerator electron radio-frequency (RF) beam bucket associated with detected
particles. Energy deposition (𝑑𝐸{𝑑𝑥) in the SC, in combination with the flight time from the TOF,
is utilized for charged particle identification. The TOF provides pion and kaon separation up to a
momentum of about 2 𝐺𝑒𝑉{𝑐 and is located just upstream of the FCAL, 5.5 m downstream of the
target, covering polar angle 𝜃 P [1𝑜, 11𝑜]. The TOF provides PID through the measurement of a
particle’s velocity in the low momentum range and time of flight information with respect to the
accelerator RF beam buckets.

The time of flight of decay particles is accomplished with the TOF and the BCAL. The BCAL
is a barrel-shaped electromagnetic calorimeter comprised of a matrix of lead and scintillating fibers
residing inside the GlueX 2.08 Tesla solenoid magnet, covering a polar angle 𝜃 P [11𝑜, 126𝑜]. The
BCAL measures the time and energy deposited by charged and neutral decay particles. The FCAL
comprises 2800 lead-glass modules, each coupled to a photomultiplier (PMT) and stacked in a

– 2 –



Figure 1: GlueX spectrometer schematic.

circular array inside a light-tight dark box enclosure. Decay particles that interact with the FCAL
create an electromagnetic shower that is read out by the PMTs and used to reconstruct detector
events. The CDC and FDC work together to provide a complete picture of the charged particle
tracks, from low to high momentum and from central to forward angles.

The DIRC [5] is located about 4 m from the target and covers a polar angle range of 2𝑜 to
11𝑜. As charged particles pass through the DIRC, they emit Cherenkov light while traveling inside
fused silica. A fraction of this light is transported to the photon camera, where it is expanded and
imaged on a pixelated photodetection plane. The resulting pattern on the pixelated photodetection
plane provides information about the velocity of the charged particle, given the momentum vector
reconstructed by the tracking system.

In this work, we aim to demonstrate the potential of ML [6] as a tool to improve PID accuracies
for GlueX analyses. ML has broadened the range of possibilities in various fields, which includes
a GlueX study [7] that used a discriminating NN to reduce background in the FCAL. Motivated by
such studies and the demand for high-accuracy PID, this work makes use of NNs to classify single
hadronic particles using GlueX MC simulation data. Manual PID methods currently utilized by
GlueX are carried out on the same MC simulation data sets and compared to the PID accuracies
obtained from the charged particle NN models.
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2 Monte Carlo Simulation Data Set

The training and test data sets were extracted from low-momentum GlueX particle gun simulations;
see Table 1. In these simulations, a particle is spawned at a randomized location, known as a vertex,
within the 30 cm long liquid H2 target cell. The generated particle is imparted with a random
trajectory and an arbitrary momentum of less than 1 𝐺𝑒𝑉{𝑐. Detailed simulations of interactions
between the generated particle and the GlueX detector and any subsequent decays and interactions
are performed using a GEANT4-based software package [8, 9]. The resulting simulated detector
signals (e.g., hits) are stored in Hall D Data Model (HDDM) format1 and reconstructed using the
halld_recon package for shower and track identification, significantly decreasing the number of
features needed to describe each event. The last step of the simulation converts the data from the
hierarchical HDDM format to a tabular format for use in manual or NN PID. The labels for each
quantity in our final data set are shown in Table 2.

Table 1: List of the particles generated using MC particle gun simulations for training and testing
of NN PID models.

Particle Generated Events Training Data Set Test Data Set

𝑒` 120,000 80,000 40,000
𝑒´ 120,000 80,000 40,000
𝜋` 120,000 80,000 40,000
𝜋´ 120,000 80,000 40,000
𝜇` 120,000 80,000 40,000
𝜇´ 120,000 80,000 40,000
𝐾` 120,000 80,000 40,000
𝐾´ 120,000 80,000 40,000
𝑝 120,000 80,000 40,000
𝑝 120,000 80,000 40,000

𝛾 120,000 80,000 40,000
𝑛 120,000 80,000 40,000
𝐾0
𝐿

120,000 80,000 40,000

MC particle gun simulations allow for easy event labeling; unfortunately, some resulting
particle decays and interactions observed within the detector produce tracks and showers not
directly attributed to the generated particle. To reduce these types of events, we exclude events
where the MC-generated particle decays before exiting the furthest GlueX detector component.
Since the simulation spawns particles at a vertex within the target cell, the training and test data
sets exclude events where the initially generated particle decays, forming a second vertex, before
exiting the GlueX detector. Using the truth information of the MC simulation, we remove from our
data sets any event with more than one vertex occurring within the first 500 ns of the simulation.

1https://github.com/rjones30/HDDM/blob/main/docs/users_guide.pdf
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To eliminate events where interactions with the detector produced secondary tracks or showers,
limits (i.e., cuts) were placed on the number of tracks and showers per event in our data sets. Events
generating a charged particle (e.g., 𝜇˘, 𝜋˘) were only included in the data sets if the reconstructed
event contained only one track with a single track-associated shower. Meanwhile, events that
generated neutral particles (e.g., 𝑛, 𝛾, 𝐾0

𝐿
) were required to have precisely one shower and no

tracks. Although these cuts may inflate the accuracy of the manual and NN PID technique due to
the exclusion of complicated interactions with the detector, these cuts were necessary to ensure the
event label matched the particle producing the shower or track in the training and test data sets.

The training data set, which included 80 ˆ 103 events per particle type, played a crucial role in
the accuracy of the NN PID technique. Our study included only the track hypothesis that matched
the generated particle type for simulation events generating charged particles. Since no muon
hypothesis existed in the default reconstruction software, the pion track hypothesis was used in the
training data set for events that generated a muon. Each row of the training data set represented
a different event, while a row in the test data set corresponded to each hypothesis for events with
charged generated particles. The event number was identified by the group label, which only
appeared in the test data set. There was only one row in the test data set per event for neutral
particles, as no hypotheses were used in the shower reconstruction process. The test data set
contained 40 ˆ 103 events per particle type. However, the number of rows in this data set was
substantially more extensive due to the inclusion of multiple hypotheses per event for simulations
where a charged particle was generated.

3 DNN model description

In this Section, we explain and justify the Tensorflow implementations of the Adam optimizer,
the cross entropy loss function, the activation functions, and Hyperband optimization.

3.1 Cross Entropy Loss Function

The advent of logistic regression [11] and the creation of cross-entropy in the early years of
information theory have evolved into a loss function ubiquitous in ML, referred to as the Cross-
Entropy Loss Function. Minimizing cross-entropy between two distributions is equivalent to
maximizing the log-likelihood [12]. The log-likelihood can be defined as:

𝑙p𝜃q “
1
𝑁

𝑁
ÿ

𝑖“1
𝑙𝑜𝑔p𝑃p𝑥𝑖|𝜃qq (3.1)

where 𝜃 defines our parameter space (e.g., energy loss, momenta) and 𝑥𝑖 is a given detection (i.e.,
a particle). By maximizing the log-likelihood, we can best predict the probability of detecting a
given 𝑥𝑖 when provided with 𝜃. The cross-entropy 𝐻p𝑃𝐷p𝑥q, 𝑃𝜃p𝑥qq is also defined in terms of the
probability of 𝑥𝑖 and 𝜃:
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Table 2: Feature labels of the particle gun data set.

Column Unit Description Overflow Value

true ptype The true generated particle type (GEANT3 coding [10])
ptype Particle hypothesis (GEANT3 coding)
group Event number
E GeV Particle total energy -5
px GeV/c Particle momentum X-component -500
py GeV/c Particle momentum Y-component -500
pz GeV/c Particle momentum Z-component -500
q e Particle charge -10
E1E9 E1/E9 ratio for the matched FCAL cluster -5
E9E25 E9/E25 ratio for the matched FCAL cluster -5
docaTrack cm Impact parameter of track to FCAL cluster -5
preshowerE GeV Shower energy in the 1st layer of the BCAL -5
sigLong cm RMS of BCAL shower along depth -5
sigTrans cm RMS of BCAL shower along azimuth -5
sigTheta rad RMS of BCAL shower along Z -5
E_L2 GeV Shower energy in the 2nd layer of the BCAL -5
E_L3 GeV Shower energy in the 3rd layer of the BCAL -5
E_L4 GeV Shower energy in the 4th layer of the BCAL -5
dEdxCDC keV/cm Average dE/dx of track in the CDC -5
dEdxFDC keV/cm Average dE/dx of track in the FDC -5
tShower ns Mean shower time in the BCAL or FCAL -10
thetac rad Track Cerenkov angle measured by DIRC -5
bCalPathLength cm Track distance from vertex to BCAL entry -5
fCalPathLength cm Track distance from vertex to FCAL entry -5
dEdxTOF keV/cm Average track dE/dx in the TOF -5
tofTOF ns Time from track vertex to impact on the TOF -5
pathLengthTOF cm Distance from track vertex to impact on the TOF -5
dEdxSc keV/cm dE/dx of track in the SC -5
pathLengthSc cm Distance from track vertex to impact on the SC -100
tofSc ns Time from track vertex to impact on the SC -100
xShower cm Shower X-component -500
yShower cm Shower Y-component -500
zShower cm Shower Z-component -500
xTrack cm Track X-component -500
yTrack cm Track Y-component -500
zTrack cm Track Z-component -500
CDChits Number of straws in the CDC producing hits -5
FDChits Number of anode wires in the FDC producing hits -5
DOCA cm Impact parameter of track at the BCAL cluster -5
deltaz cm Impact parameter of track at the BCAL along Z -100
deltaphi rad Impact parameter of track at the BCAL along azimuth -10
tFlightSc ns Calculated time from vertex to SC
tFlightBCAL ns Calculated time from vertex to BCAL
tFlightTOF ns Calculated time from vertex to TOF
tFlightFCAL ns Calculated time from vertex to FCAL
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𝐻p𝑃𝐷p𝑥q, 𝑃𝜃p𝑥qq “ ´
1
𝑁

𝑁
ÿ

𝑖“1
𝑙𝑜𝑔p𝑃p𝑥𝑖|𝜃qq

“ ´𝑙p𝜃q

(3.2)

Thus, maximizing the log-likelihood is equivalent to minimizing the cross-entropy, known
as the cross-entropy and maximum likelihood principle. The Tensorflow implementation of the
cross-entropy loss function is used during training for the NN models.

3.2 Adam Optimizer

The Adam optimizer [13] is a sophisticated method for optimizing complex objective functions
through gradient-based parameter adjustments. By combining the strengths of the AdaGrad [14]
and RMSProp [15] optimization methods, Adam excels in first-order gradient-based optimization
of stochastic functions. It uses estimates of the first and second moments of gradients to compute
adaptive learning rates for each parameter, making it highly effective in high-dimensional parameter
spaces. Due to the high level of stochasticity in experimental particle physics data, Adam is
particularly well-suited for minimizing the Cross-Entropy Loss Function.

3.3 Structure and Activation Functions

A NN structure contains an input layer, one or more hidden layers, and an output layer. The input
layer of our models is comprised of 38 nodes, which is equal to the number of feature labels used in
training, shown in Table 2. Each of the hidden layers of the NN makes use of the Rectified Linear
Unit (ReLU) activation function [16, 17], and is defined in Equation 3.3.

𝑓 p𝑥q “ 𝑚𝑎𝑥p0, 𝑥q (3.3)

For any input 𝑥 from a previous neuron, a non-negative output 𝑓 p𝑥q will be produced from that
neuron. The non-linearity of ReLU introduces sparsity and avoids saturation at large values while
remaining simple. These advantages allow for computational efficiency during training and for
meaningful connections to be drawn between complex relationships in the data. In the output layers
of the NN models, the sigmoid activation function is used and is defined by Equation 3.4.

𝑆p𝑥q “
1

1 ` 𝑒´𝑥
(3.4)

For an input 𝑥, the output 𝑆p𝑥q will always be between 0 and 1. This property of the sigmoid
activation function is particularly useful in the output layers of the NN models. It allows for a
confidence-based prediction when classifying particles, as the ouput can be interpreted as an array
of probabilities that correspond to each particle in the respective data set.
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3.4 Hyperband Algorithm

In order to minimize the Cross-Entropy Loss Function, an optimization process is used to determine
the number of hidden layers, the number of neurons in each hidden layer, and the learning rate of
the Adam optimizer. In this work, the Hyperband algorithm [18] is implemented to determine the
optimized values of each hyperparameter. Hyperband is chosen as the optimization algorithm due
to its computational efficiency and superior performance compared to Bayesian optimization. This
algorithm selects different sets of hyperparameters and trains the neural network for a fixed number
of epochs. It employs a technique known as successive halving, where only half of the models with
the lowest cross-entropy loss are allocated resources to continue training after a specified number of
epochs have passed. This procedure is repeated until only a single set of hyperparameters remains,
which are then used to train the NN models that are used for PID.

4 Methods

In this Section, a description is given of the manual PID cuts and the training process for the NN
models used for PID.

4.1 Manual PID

In this work, we identify pions (𝜋˘ « 140 𝑀𝑒𝑉{𝑐2) and muons (𝜇˘ « 106 𝑀𝑒𝑉{𝑐2) as the same
particle, denoted as 𝜋` | 𝜇` or 𝜋´ | 𝜇´. Our PID method introduces this simplification since pions
and muons have similar masses, and the GlueX detector does not have a hadronic calorimeter,
which makes distinguishing between these particles difficult. Muons can be discerned from pions
by investigating the momentum distributions of a given event in the FCAL. However, this must be
performed before reconstruction and is outside the scope of this paper.

The timing cuts implemented in this paper use the Spring 2017 Analysis Launch Cuts [4]; each
is shown in Table 4. The measured BCAL and FCAL times were recorded as a single variable,
tShower, in the simulation data set; thus, the BCAL and FCAL time measurements must be
distinguished. If an event has a detection for E_L2, then tShower is labeled as the mean shower
time in the BCAL, and if there is a detection for E1E9, then tShower is labeled as the mean shower
time in the FCAL. The difference between the mean shower times in each detector is taken with
the calculated time from the vertex to the BCAL (tFlightBCAL) or the FCAL (tFlightFCAL).
In order to assess the quality of a given hypothesis, a 𝜒2 value is calculated between the mean
shower time and calculated shower times. Only hypotheses with a 𝜒2 value of less than 0.075 are
considered robust; any hypotheses above this threshold are labeled as no identification (no ID).
Only timing information is available for charged particles in the simulation data set; therefore, no
timing cuts were made for neutral particles.

In addition to timing cuts, track energy loss cuts are implemented using the dEdxCDC variable
and the magnitude of the particle momentum. To create a decision boundary between each particle,
the functional form of the equations utilized in the Spring 2017 Analysis Launch Cuts are used and
are seen in Equation 4.1.

𝑓𝑖p𝑝q “ expp𝑎𝑖𝑝 ` 𝑏𝑖q ` 𝑐𝑖 (4.1)
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In Equation 4.1, 𝑝 is the momentum (𝐺𝑒𝑉{𝑐) of a particle, 𝑑𝐸{𝑑𝑥 is the energy loss (𝑘𝑒𝑉{𝑐𝑚) in the
CDC, and 𝑒 is Euler’s number. Using the training data set, the number of incorrectly identified
particles is minimized by treating constants 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 as free parameters and utilizing the
minimize method from the scipy.optimize [19] module. The 𝑑𝐸{𝑑𝑥 – 𝑝 decision boundaries
are only derived for charged particles since insufficient data is available for neutral particles in the
simulation data set. The constants for the optimized decision boundaries are shown in Table 3

Table 3: The optimized decision boundary parameters.

𝑓𝑖p𝑝q 𝑎𝑖 / [𝐺𝑒𝑉{𝑐] 𝑏𝑖 𝑐𝑖 / [𝐾𝑒𝑉{𝑐𝑚]

𝑓1p𝑝q -5.095 -10.205 2.080 ¨ 10´6

𝑓2p𝑝q -3.947 -12.284 1.936 ¨ 10´6

𝑓3p𝑝q -0.185 -19.215 2.190 ¨ 10´6

Each optimized decision boundary is overlaid on the test data set in Figure 2. An additional
manual cut is made for electrons and muons/pions, in which the ratio of the particle’s total energy
E to the magnitude of the momentum is taken, with a decision boundary at 𝐸{𝑝 “ 0.83 𝑐. Lastly, a
hypothesis is only considered if the particle hypothesis matched the predicted hypothesis from the
manual PID criteria shown in Table 4. A PID is made for every hypothesis in our test data set that
meets the 𝜒2 criteria; however, if a given event met none of the criteria, then no ID is designated.
Furthermore, if an event has two or more PIDs that match different hypotheses in the test data
set, the particle type with the highest 𝜒2 value is designated. The confusion matrix presenting the
results of our manual PID on generated charged particles is shown in Figure 3.

Table 4: Manual PID cuts. If an entry is missing, there is no cut for that particle. The 𝑑𝐸{𝑑𝑥1, 𝑑𝐸{𝑑𝑥2

and 𝑑𝐸{𝑑𝑥3 cuts corresponded to equation 4.1 with variables listed in Table 3.

Particle Δ𝑡 BCAL [ns] Δ𝑡 FCAL [ns] 𝑑𝐸{𝑑𝑥 [𝑘𝑒𝑉{𝑐𝑚] 𝐸{𝑝 [𝑐]

𝑒˘ ˘ 1.0 ˘ 2.0 𝑓3p𝑝q ă 𝑑𝐸{𝑑𝑥 ă 𝑓2p𝑝q > 0.83

𝜋˘ / 𝜇˘ ˘ 1.0 ˘ 2.0 𝑑𝐸{𝑑𝑥 ă 𝑓3p𝑝q < 0.83

𝐾˘ ˘ 0.75 ˘ 2.5 𝑓2p𝑝q ă 𝑑𝐸{𝑑𝑥 ă 𝑓1p𝑝q

𝑝 / 𝑝 ˘ 1.0 ˘ 2.0 𝑓1p𝑝q ă 𝑑𝐸{𝑑𝑥

4.2 Neural Network PID

Before the training of the NN models is performed, two data pre-processing steps are required. The
first data pre-processing step is separating the test and training data sets into charged or neutral
particle data sets, such that separate NN models are trained for neutral and charged particles. The
second pre-processing step is replacing any parameter in the data sets that did not obtain a value
from the simulation (e.g., no detector hits) with the ’Overflow Value’ seen in Table 2. This is done
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Figure 2: A 2-dimensional histogram of the average track energy loss in the CDC plotted against
the magnitude of momentum vectors from the test data set. The manual PID cuts described in
Section 4.1 are overlaid to show the classification boundaries; 𝑓1p𝑝q is shown with the dotted line,
𝑓2p𝑝q is shown with the dashed line, and 𝑓3p𝑝q is shown with the solid line. The functional form
of each decision boundary is shown in equation 4.1 and the constants for each equation in Table 3.
Regions of the plot shaded in red are classified as 𝑝 or 𝑝, purple as 𝐾˘, yellow as 𝑒˘, and blue as
𝜋˘ or 𝜇˘.

because Tensorflow requires a real number input for training. The feature labels in Table 2 that
have an Overflow Value are the 38 features used to train the charged and neutral particle NN models.

The NN models are trained using the TensorFlow implementations of the Cross-Entropy
Loss Function, Adam Optimizer, and ReLU activation function, all described in Section 3. The
number of neurons, the number of hidden layers, and the learning rate of the Adam optimizer are
optimized to have the maximum validation accuracy by Hyperband. The variation permitted for
each hyperparameter is listed in Table 5. The optimized hyperparameters are used to train a NN
model for up to 50 epochs. The training is ended early if the Cross-Entropy Loss changes by less
than 0.01 after five successive epochs.

The trained NN models are used to classify every hypothesis in the test data set. Each prediction
is made by the predict method from the Tensorflow NN models and yields a confidence value
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Figure 3: The confusion matrix for manual PID on charged particles is shown in Figure 3 and the
confusion matrix for NN PID on charged particles is shown in Figure 4. The generated particle is
shown on the y-axis, and the identified particle is shown on the x-axis. A no ID classification was
given for events in the manual PID scheme that do not meet the 𝜒2 criteria described in Section 4.1.
Similarly, a no ID classification is given for the NN PID method when the confidence criteria
described in Section 4.2 is not achieved.

for each possible classification (i.e., particle). The highest confidence value across all hypotheses
in an event is accepted as the PID. A no ID label is given for any PID with a confidence of less
than 0.4. For the same reason discussed in Section 4.1, pions and muons with the same charge are
classified as identical particles. The confusion matrix for the charged particle NN model is shown
in Figure 4 and the confusion matrix for the neutral NN model is shown in Figure 5.
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Table 5: Variation for each hyperparameter permitted during training.

Hyperparameter Variation Permitted

Hidden layers 1 – 6

Neurons per hidden layers 100 – 600

Learning rate 10´4 – 10´2

5 Results

This Section presents the results of the traditional PID cuts and NN PID models. It directly compares
these two methods and discusses the advantages of NNs in PID. The importance of each feature in
the simulation data set is presented to better understand how the NN models are making predictions.

5.1 Comparing PID techniques

The results of manual PID cuts on charged particle MC simulation data are displayed as a confusion
matrix in Figure 3. The highest accuracy by the manual cuts is 94.2% for the proton (𝑝) sample,
with only 5.2% of the 40 ˆ 103 simulated proton test events producing a no ID result. The 𝐾´,
𝑒´, and 𝑒` had manual PID accuracies range from 82% to 84%. The poorest performance of the
manual PID cuts occurred in 𝑝, 𝐾`, 𝜋` | 𝜇`, and 𝜋´ | 𝜇´ test data which yield accuracies beween
57% and 64%. Many of the samples that are incorrectly identified by the manual PID method are
designated as no ID. The most prominent exceptions are the 𝐾` test sample, which is misidentified
as a 𝑝 12.4% of the time, and the 𝜋` | 𝜇` test sample that is misclassified as a 𝐾` or 𝑒` 9.2%
and 10.7% of the time, respectively. The 𝜋´ | 𝜇´ test sample is misidentified 10.7% of the time as
an 𝑒´ and 8.7% as a 𝐾´. Additionally, there are several cases in which the manual PID method
misidentified test sample particles less than 5% of the time. The large number of events that did
not pass the 𝜒2 timing cut, along with the instances of substantial particle misidentification shown
in Figure 3, underscore areas where a NN PID method can enhance GlueX PID performance over
the manual PID method.

Figure 4 shows the results of our NN PID method on charged particle MC simulation data
displayed as a confusion matrix. Substantial improvements are achieved in particle identification
for all simulated charged particle MC data samples. The most notable improvement is the reduction
of events classified as no ID. All charged particle events have ă 1% events classified as no ID with
the exception of the 𝑝 and 𝐾´ samples, which are reduced from 31.3% to 4.6% and 9.4% to 1.4%,
respectively. As previously mentioned, the 𝑝, 𝐾`, 𝜋` | 𝜇`, and 𝜋´ | 𝜇´ have the lowest manual PID
accuracies in the range 57% – 64%, but are correctly identified with accuracies in the range 83.5%
to 90.5% by the NN models. The 𝑒` and 𝑒´ samples are both identified with 83.8% accuracy by the
manual PID method, but are correctly identified by the NN PID method with accuracies of 96.5%
and 94.5%, respectively. Compared to the manual PID method, the PID accuracy for all charged
particles improved when the NN PID method was implemented. Even the highest PID accuracy
in the manual PID method sample (𝑝) is improved by 3.4% by the charged NN model. These
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Figure 4: The confusion matrix for manual PID on charged particles is shown in Figure 3, and the
confusion matrix for NN PID on charged particles is shown in Figure 4. The generated particle is
shown on the y-axis, and the identified particle is shown on the x-axis. A no ID classification is
given for events in the manual PID scheme that do not meet the 𝜒2 criteria described in Section 4.1.
Similarly, a no ID classification is given for the NN PID method when the confidence criteria
described in Section 4.2 is not achieved.

results show that NNs are better at PID on MC data, and that NNs have the potential to significantly
increase the PID accuracies for the GlueX experiment.

Although PID performance increased for every simulated charge particle using the NN PID
method, there are three increases in particle misclassification. For the 𝑝, the PID accuracy increased
by 23.6% and the percentage of no ID events decreased by 26.7% compared to the manual PID
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Figure 5: The confusion matrix for the NN PID for neutral particles. The generated particle is
shown on the y-axis, and the particle classified by the neutral NN model is shown on the x-axis.
Particles that do not meet the confidence criteria discussed in Section 4.2 are classified with a no
ID label.

method, however there is a 3.8% increase in misidentification as a 𝐾´ for the NN PID method.
Similarly, the 𝐾` sample has a 4.3% increase in being identified as a 𝜋` | 𝜇` when using the NN
PID method, but also correctly identified 25.9% more events and reduced events with a no ID
classification by 25.2% when compared to manual PID. The largest increase in misidentification
for the charged NN model occurred for the 𝐾´ sample in which there is a 6.2% increase in
misidentification as a 𝜋´ | 𝜇´, however, the 𝐾´ sample has a 2.8% increae in correclty identified
events by the NN PID method and a 8% reduction in no ID classification. In summation, the
only downside of the charged NN PID method is an increase of misclassification for three charged
particles in three particular cases. These increases are notable, however are a necessary compromise
for significant increased in PID accuracy, which can be potentially removed by using more training
data and more complex ML architectures.

The classification scheme for the NN PID described in Section 4.2 specifies that the particle
prediction with the highest confidence for a given event is chosen as the PID for that event. This
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selection criterion differs from the one used in manual PID, where the hypothesis with the lowest
timing 𝜒2 value is selected. The timing information is crucial for some particles (i.e., 𝑒´). However,
for other particles (i.e., 𝑝), some quantities (e.g. 𝑑𝐸{𝑑𝑥) play a more significant role in PID while
the timing information is less crucial. Using the minimum timing 𝜒2 as a metric for the strength of
a hypothesis limits the accuracy of PID for specific particles. This limitation is eliminated for the
NN PID method, as the sigmoid output function provides a confidence interval between 0 and 1,
which is determined by all the input features of the data set. This confidence-based decision method
provides a comprehensive analysis of all the recorded quantities in a given event and avoids a bias
from particles that are better characterized by any one feature.

Figure 5 shows the confusion matrix for the neutral particle NN PID model. Unlike charged
particles, robust manual PID methods for classifying neutral particles do not exist in the GlueX
experiment. The lone exception is the existence of timing cuts for 𝛾. Unfortunately, the simulation
data set did not recover any predicted timing values (e.g., tFlightBCAL and tFlightFCAL); thus,
no manual PID could be carried out for neutral particles. Regardless, the NN PID method showed
that neutral particles can be identified accurately. An accuracy of 98.2% is achieved for identifying
𝛾, 81.7% for 𝐾0

𝐿
, and 89.1% for 𝑛. The model that is used to achieve these classification accuracies

is optimized by the HyperBand algorithm, which found optimal validation accuracy for a NN model
with three hidden layers and a total of „2 ˆ 105 parameters. These optimization values differ from
the single hidden layer with „4 ˆ 104 parameters of the charged NN model. The near order of
magnitude increase in complexity for the neutral NN PID model illustrates the difficulty of neutral
PID in the GlueX detector; however, it is demonstrated that neutral PID is possible through the use
of ML. This success can still be improved upon, as there is substantial confusion between the 𝐾0

𝐿

and the 𝑛; with the 𝐾0
𝐿

identified as a 𝑛 in 16.8% of events, and 𝑛 as a 𝐾0
𝐿

10.8% of the time. The
misidentifications observed between various particles, neutral as well as charged, can be reduced
by adding complexity to the PID models and training with larger data sets.

5.2 Feature Importance

To analyze the PIDs made by the NN models, Shapley Additive exPlanations (SHAP) [20] is
employed to assess the importance of each feature used in training. SHAP is derived from Shapley
values from cooperative game theory and is a method to measure the average contribution of a
given feature across the entire feature space. A SHAP value is computed for each feature for a
given classification by considering possible permutations of features and then taking the average of
all marginal contributions by a feature to the resultant prediction. In our case with nonlinear NN
models with large data sets, this process is computationally expensive, so random.choice from
NumPy [21] is used to randomly sample 1,000 hypotheses for each particle from our test sample.
Since the average marginal contribution of a given feature can be positive or negative, the absolute
value of the SHAP values was taken. The magnitude of the SHAP values for positively charged
particles is shown in Figure 6, negatively charged particles in Figure 7, and neutral particles in
Figure 8.

For 𝑝 in Figure 6, it can be seen that the most imporant feature is dEdxCDC by over an order
of magnitude. This result is unsurprising as 𝑝 has traditionally been identified using this feature in
previous GlueX PID studies. Additionally, pathLengthSc is another pivotal variable in the 𝑝 NN
PID, which is used to obtain the timing information used in manual PID. Thus, this dependency is
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Figure 6: The absolute value of the SHAP values is denoted as the SHAP value magnitude.
103 hypotheses from the test sample are randomly sampled for each particle type, and the SHAP
value [20] is calculated for each feature. Here, only the 𝑞 “ `1 particles from the charged particle
NN model are shown; 𝑝 in pink, 𝐾` in red, 𝑒` in light blue and 𝜋` | 𝜇` in green. The black line in
each box plot represents the mean SHAP value in a given box plot. The upper and lower end of a
given box plot represent the 75th and 25th percentile of the data, respectively. Each of the feature
labels used to train our charged NN model from Table 2 is shown on the x-axis unless a SHAP value
of zero is calculated, and then these features are omitted.
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Figure 7: The same as Figure 6, except the SHAP value magnitudes for particles with 𝑞 “ ´1 are
shown. 𝑝 is displayed in pink, 𝐾´ in red, 𝑒´ in light blue and 𝜋´ | 𝜇´ in green.
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Figure 8: The same as Figure 6 and 7, except the SHAP value magnitudes for particles included in
our neutral particle NN model are shown. 𝛾 is displayed in pink, 𝐾0

𝐿
in red and 𝑛 in light blue.
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also unsurprising. Variables such as E_L2, E_L3, E_L4, yShower and zShower each proved to be
substantially beneficial in the classification of 𝑝 despite not being used in manual PID. This is in
comparison to each of the momenta components, which are shown to be less crucial for identifying
𝑝, although necessary to perform manual PID. It is also important to highlight that the data outside
of the interquartile range of a given box plot tends to be skewed toward a minimum value. This
is due to an occasional ambiguous measurement or implementation of an overflow value for a
given event, which causes the models to not rely heavily on this feature for a given classification.
Such a case yields very low SHAP values outside of the interquartile range, giving most features
in the feature space tails toward their minimum values. Conversely, features such as docaTrack
or FDChits have very constrained minimum and maximum values for the respective box plots,
signifying that the models can consistently rely on these variables due to ubiquity in the data set
and this particular feature having a characteristic distribution for a given particle that aids in PID.
For 𝑝, Figure 6 demonstrates that nearly all features can be used for a given classification, which
suggests that the PID process for our NN PID model is dynamic and nonlinear.

As for 𝐾`, 𝑒` and 𝜋` | 𝜇` in Figure 6, the noteworthy features that were used for manual
PID that also have large SHAP values are dEdxCDC and pathLengthSc for 𝐾`, tShower for 𝑒`,
and tShower as well as pathLengthSc for 𝜋` | 𝜇`. In contrast, each of the positive particles also
rely heavily on features such as E_L2 and zShower to make classifications, which are features that
are generally not included in manual PID for the GlueX experiment. In the case of zShower, the
charged NN model is most likely using the distance of an event traveled along the beam path to
distinguish between a BCAL or FCAL shower. Although zShower has a high mean SHAP value
for these three positively charged particles, all features have SHAP values within two or three orders
of magnitude of each other. This suggests that in order to achieve high PID accuracies, the entire
feature space should be analyzed and synthesized together. Many of the same conclusions can be
drawn for Figure 7, in which the SHAP value magnitudes are displayed for the negatively charged
particles. 𝑝 follows similar trends as 𝑝, and the other three negatively charged particles follow the
same trends for a given feature as their positively charged counterparts.

It should be noted that in Figures 6 and 7, the feature labels q, dEdxTOF, tofTOF and
pathLengthTOF are omitted because all calculated SHAP values yield a value of zero. For
dEdxTOF, tofTOF, and pathLengthTOF, this is the case because there are no recorded values in
the simulation data set. Thus, all values for these features were replaced by the Overflow Values in
Table 2, hence, the model could not use these features. Contrarily, q was available in all events, but
given that the data set was separated for training into a charged and neutral data set, the capacity of q
to aid in classification was significantly reduced. The absence of q from the Figures 6 and 7 reveals
that charge is not an essential feature when distinguishing the positive and negative counterparts of
a given particle in the GlueX detector after reconstruction.

Figure 8 shows the SHAP values for neutral particles. The most obvious property of the neutral
SHAP value plot is the large number of missing features; as in the charged model, the omitted
features have SHAP values of zero. All these features, except for q, have no detections in our
simulation test data set. Thus, they always default to the Overflow Value shown in Table 2 and are
not crucial features for neutral PID. In the case of q, all particles have no charge. Thus, this feature
is not instructive for the neutral NN model.

Similarly to the SHAP values for charged particles, many of the features for the neutral particles
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have long whiskers extending from the 25th percentile to the minimum SHAP value magnitude.
Again, this is due to sparsity of features in the data set for a given event. The only features that do not
have SHAP magnitudes skewed to low values are E1E9 and E9E25 for 𝑛; despite this, these features
have lower average SHAP magnitudes. It can also be seen that E, tShower, and zShower are the
features that contribute the most to neutral particle classification. However, in the same manner
as the charged NN model, the neutral NN model uses all available data to make classifications.
Even with a substantial portion of the simulation data set not having measurements, the neutral NN
model proved to be effective, which suggests that ML should be used in future GlueX PID studies.

6 Conclusion

This work compares traditional manual PID methods from the GlueX experiment with NN PID
models that are trained on MC simulation data. The GlueX manual PID methods are adapted to
best classify charged particles using the training simulation data set, while charged and neutral
NN models are trained using the same data set. It is found that the NN models outperformed
the standard manual PID methods used by the GlueX experiment for all charged particles and
successfully conducted neutral particle PID, which has been a long-standing challenge for the
GlueX experiment. In addition to higher PID accuracies, the NN models allow for an unbiased
prediction-based PID to be performed that includes a holistic interpretation of all quantities obtained
after reconstruction. The NN models also allow feature importance to be conducted, which gives
insight into how the NN models make particle classifications and may provide critical insight into
underlying physics when applied to experimental data.

These results underscore the significant potential of ML to enhance PID in the analysis of
GlueX experimental data. Despite the potential biases and inflated PID accuracies invoked by the
simulation data set used in this study, the potential of ML to contribute to PID is evident. The use of
higher energy (1 – 12 𝐺𝑒𝑉) simulation data, training with hit-based data rather than reconstructed
data, and utilizing experimental data are all potential pathways to further examine the capabilities
of ML at PID and bolster the success of the GlueX experiment.
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