Difference between revisions of "Amplitudes for the Exotic b1π Decay"

From UConn PAN
Jump to navigation Jump to search
m
Line 34: Line 34:
 
</math></td>
 
</math></td>
 
<td>
 
<td>
polarization term: &epsilon;=0(1) for x (y) polarization; &eta; is the polarization fraction
+
polarization term: &epsilon;=0 (1) for x (y) polarization; &eta; is the polarization fraction
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 53: Line 53:
 
</math></td>
 
</math></td>
 
<td>
 
<td>
Clebsch-Gordan coefficients for isospin sum <math>b1 \oplus \pi^- \rightarrow X</math>
+
Clebsch-Gordan coefficients for isospin sum <math>b_1 \oplus \pi^- \rightarrow X</math>
 
</td>
 
</td>
 
</tr>
 
</tr>

Revision as of 16:03, 12 July 2011

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{m_X=-L_X}^{L_X} \sum\limits_{m_{b1}=-J_{b1}}^{J_{b1}} Y_{m_X}^{L_X}(\theta_X,\phi_X) D_{m_{b1} n_{b1}}^{J_{b1}*}(\theta_{b1},\phi_{b1},0) }

angular distributions two-body X and b1 decays

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ (-)^{J_X+1+\epsilon} e^{2i\alpha} \left(\begin{array}{cc|c} J_{b1} & L_X & J_X \\ m_{b1} & m_X & -1 \end{array}\right) + \left(\begin{array}{cc|c} J_{b1} & L_X & J_X \\ m_{b1} & m_X & +1 \end{array}\right) \right] }

resonance helicity sum

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{1+(-)^\epsilon \eta}{4}\right) }

polarization term: ε=0 (1) for x (y) polarization; η is the polarization fraction

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^{L_X} q^{J_{b1}} }

k, q are breakup momenta for the resonance and isobar, respectively

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} I_{b1} & 1 & I_X \\ I_{z\pi^+} & I_{z\pi^-} & I_{z\pi^+}+I_{z\pi^-} \end{array}\right) }

Clebsch-Gordan coefficients for isospin sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 \oplus \pi^- \rightarrow X}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{L_{b1}=0}^{2} \sum\limits_{m_{L_{b1}}=-L_{b1}}^{L_{b1}} D_{m_\omega \lambda_\rho}^{J_\omega *}(\theta_\omega,\phi_\omega,0) Y_{m_\rho}^{s_\rho}(\theta_\rho,\phi_\rho) }

two-stage ω breakup angular distributions

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} s_\omega & L_{b1} & J_{b1} \\ 0 & m_{L_{b1}} & m_{b1} \end{array}\right) \left(\begin{array}{cc|c} 1 & s_\rho & J_\omega \\ 0 & \lambda_\rho & m_\omega \end{array}\right) }

angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{I_\rho=0}^{1} \sum\limits_{I_{z\rho}=-I_\rho}^{I_\rho} \left(\begin{array}{cc|c} 1 & I_\rho & 0 \\ 0 & I_{z\rho} & 0 \end{array}\right) \left(\begin{array}{cc|c} I_{\pi} & I_{\pi} & I_\rho \\ +1 & -1 & I_{z\rho} \end{array}\right) }

Clebsch-Gordan coefficients for isospin sums: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega}