Difference between revisions of "Amplitudes for the Exotic b1π Decay"
Senderovich (talk | contribs) |
Senderovich (talk | contribs) m |
||
| Line 34: | Line 34: | ||
</math></td> | </math></td> | ||
<td> | <td> | ||
| − | polarization term: ε=0(1) for x (y) polarization; η is the polarization fraction | + | polarization term: ε=0 (1) for x (y) polarization; η is the polarization fraction |
</td> | </td> | ||
</tr> | </tr> | ||
| Line 53: | Line 53: | ||
</math></td> | </math></td> | ||
<td> | <td> | ||
| − | Clebsch-Gordan coefficients for isospin sum <math> | + | Clebsch-Gordan coefficients for isospin sum <math>b_1 \oplus \pi^- \rightarrow X</math> |
</td> | </td> | ||
</tr> | </tr> | ||
Revision as of 16:03, 12 July 2011
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{m_X=-L_X}^{L_X} \sum\limits_{m_{b1}=-J_{b1}}^{J_{b1}} Y_{m_X}^{L_X}(\theta_X,\phi_X) D_{m_{b1} n_{b1}}^{J_{b1}*}(\theta_{b1},\phi_{b1},0) } |
angular distributions two-body X and b1 decays |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ (-)^{J_X+1+\epsilon} e^{2i\alpha} \left(\begin{array}{cc|c} J_{b1} & L_X & J_X \\ m_{b1} & m_X & -1 \end{array}\right) + \left(\begin{array}{cc|c} J_{b1} & L_X & J_X \\ m_{b1} & m_X & +1 \end{array}\right) \right] } |
resonance helicity sum |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{1+(-)^\epsilon \eta}{4}\right) } |
polarization term: ε=0 (1) for x (y) polarization; η is the polarization fraction |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^{L_X} q^{J_{b1}} } |
k, q are breakup momenta for the resonance and isobar, respectively |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} I_{b1} & 1 & I_X \\ I_{z\pi^+} & I_{z\pi^-} & I_{z\pi^+}+I_{z\pi^-} \end{array}\right) } |
Clebsch-Gordan coefficients for isospin sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 \oplus \pi^- \rightarrow X} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{L_{b1}=0}^{2} \sum\limits_{m_{L_{b1}}=-L_{b1}}^{L_{b1}} D_{m_\omega \lambda_\rho}^{J_\omega *}(\theta_\omega,\phi_\omega,0) Y_{m_\rho}^{s_\rho}(\theta_\rho,\phi_\rho) } |
two-stage ω breakup angular distributions |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} s_\omega & L_{b1} & J_{b1} \\ 0 & m_{L_{b1}} & m_{b1} \end{array}\right) \left(\begin{array}{cc|c} 1 & s_\rho & J_\omega \\ 0 & \lambda_\rho & m_\omega \end{array}\right) } |
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{I_\rho=0}^{1} \sum\limits_{I_{z\rho}=-I_\rho}^{I_\rho} \left(\begin{array}{cc|c} 1 & I_\rho & 0 \\ 0 & I_{z\rho} & 0 \end{array}\right) \left(\begin{array}{cc|c} I_{\pi} & I_{\pi} & I_\rho \\ +1 & -1 & I_{z\rho} \end{array}\right) } |
Clebsch-Gordan coefficients for isospin sums: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega} |