Difference between revisions of "Amplitudes for the Exotic b1π Decay"

From UConn PAN
Jump to navigation Jump to search
m
Line 13: Line 13:
 
\sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}}  
 
\sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}}  
 
\sum\limits_{m_\omega=-J_\omega}^{J_\omega}
 
\sum\limits_{m_\omega=-J_\omega}^{J_\omega}
Y_{m_X}^{L_X}(\theta_X,\phi_X)
+
D_{m_X m_{b_1}}^{L_X *}(\theta_X,\phi_X,0)
 
D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0)
 
D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0)
 
</math></td>
 
</math></td>
Line 59: Line 59:
 
\left(\begin{array}{cc|c}
 
\left(\begin{array}{cc|c}
 
I_{b_1}    & I_\pi      & I_X \\
 
I_{b_1}    & I_\pi      & I_X \\
I_{z\pi^+} & I_{z\pi^-} & I_{z\pi^+}+I_{z\pi^-}
+
I_{zb_1^+} & I_{z\pi^-} & I_{zb_1^+}+I_{z\pi^-}
 
\end{array}\right)
 
\end{array}\right)
 
</math></td>
 
</math></td>
Line 70: Line 70:
 
\sum\limits_{L_{b_1}=0}^{2}  
 
\sum\limits_{L_{b_1}=0}^{2}  
 
\sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}}
 
\sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}}
\sum\limits_{\lambda_\rho=-s_\rho}^{s_\rho}
+
\sum\limits_{L_{\pi^+\pi^-},L_\omega=1,3}
D_{m_\omega \lambda_\rho}^{J_\omega *}(\theta_\omega,\phi_\omega,0)
+
\sum\limits_{m_{\pi^+\pi^-}=-L_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}
Y_{\lambda_\rho}^{s_\rho}(\theta_\rho,\phi_\rho)
+
u^{L_\omega} v^{L_{\pi^+\pi^-}}
 +
</math></td>
 +
</tr>
 +
<tr>
 +
<td><math>
 +
D_{m_\omega m_{\pi^+\pi^-}}^{J_\omega *}(\theta_\omega,\phi_\omega,0)
 +
Y_{m_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}(\theta_\rho,\phi_\rho)
 
</math></td>
 
</math></td>
 
<td>
 
<td>
 
two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions,
 
two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions,
currently modeled as <math>L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=s_\rho</math>
+
currently modeled as <math>L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=L_{\pi^+\pi^-}</math>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 86: Line 92:
 
\end{array}\right)
 
\end{array}\right)
 
\left(\begin{array}{cc|c}
 
\left(\begin{array}{cc|c}
1 & s_\rho      & J_\omega \\
+
L_\omega & L_{\pi^+\pi^-} & J_\omega \\
0 & \lambda_\rho & m_\omega
+
0       & m_{\pi^+\pi^-}  & m_\omega
 
\end{array}\right)
 
\end{array}\right)
 
</math></td>
 
</math></td>
Line 96: Line 102:
 
<tr>
 
<tr>
 
<td><math>
 
<td><math>
\sum\limits_{I_\rho=0}^{1}
 
\sum\limits_{I_{z\rho}=-I_\rho}^{I_\rho}
 
 
\left(\begin{array}{cc|c}
 
\left(\begin{array}{cc|c}
1 & I_\rho    & 0 \\
+
I_\pi    & 1 & 0 \\
0 & I_{z\rho} & 0
+
I_{\pi^0} & 0 & 0
 
\end{array}\right)
 
\end{array}\right)
 
\left(\begin{array}{cc|c}
 
\left(\begin{array}{cc|c}
I_{\pi} & I_{\pi} & I_\rho \\
+
I_{\pi}   & I_{\pi}   & 1 \\
+1      & -1      & I_{z\rho}
+
I_{z\pi^+} & I_{z\pi^-} & 0
 
\end{array}\right)
 
\end{array}\right)
 
</math></td>
 
</math></td>

Revision as of 20:20, 14 July 2011

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{}^{J_X L_X P_X}= }

defining an amplitude...

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{m_X=-L_X}^{L_X} \sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}} \sum\limits_{m_\omega=-J_\omega}^{J_\omega} D_{m_X m_{b_1}}^{L_X *}(\theta_X,\phi_X,0) D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0) }

angular distributions two-body X and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 (J_{b_1}^{PC}=1^{+-})} decays

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ P_X(-)^{J_X+1+\epsilon} e^{2i\alpha} \left(\begin{array}{cc|c} J_{b_1} & L_X & J_X \\ m_{b_1} & m_X & -1 \end{array}\right) + \left(\begin{array}{cc|c} J_{b_1} & L_X & J_X \\ m_{b_1} & m_X & +1 \end{array}\right) \right] }

resonance helicity sum: ε=0 (1) for x (y) polarization; Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_X} is the parity of the resonance

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{1+(-)^\epsilon \eta}{4}\right) }

polarization term: η is the polarization fraction

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^{L_X} q^{L_{b_1}} }

k, q are breakup momenta for the resonance and isobar, respectively

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} I_{b_1} & I_\pi & I_X \\ I_{zb_1^+} & I_{z\pi^-} & I_{zb_1^+}+I_{z\pi^-} \end{array}\right) }

Clebsch-Gordan coefficients for isospin sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 \oplus \pi^- \rightarrow X}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{L_{b_1}=0}^{2} \sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}} \sum\limits_{L_{\pi^+\pi^-},L_\omega=1,3} \sum\limits_{m_{\pi^+\pi^-}=-L_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}} u^{L_\omega} v^{L_{\pi^+\pi^-}} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{m_\omega m_{\pi^+\pi^-}}^{J_\omega *}(\theta_\omega,\phi_\omega,0) Y_{m_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}(\theta_\rho,\phi_\rho) }

two-stage Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega (J_\omega^{PC}=1^{--})} breakup angular distributions, currently modeled as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=L_{\pi^+\pi^-}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} J_\omega & L_{b_1} & J_{b_1} \\ m_\omega & m_{L_{b_1}} & m_{b_1} \end{array}\right) \left(\begin{array}{cc|c} L_\omega & L_{\pi^+\pi^-} & J_\omega \\ 0 & m_{\pi^+\pi^-} & m_\omega \end{array}\right) }

angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} I_\pi & 1 & 0 \\ I_{\pi^0} & 0 & 0 \end{array}\right) \left(\begin{array}{cc|c} I_{\pi} & I_{\pi} & 1 \\ I_{z\pi^+} & I_{z\pi^-} & 0 \end{array}\right) }

Clebsch-Gordan coefficients for isospin sums: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega}