Difference between revisions of "Amplitudes for the Exotic b1π Decay"
Senderovich (talk | contribs) m |
Senderovich (talk | contribs) |
||
| Line 13: | Line 13: | ||
\sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}} | \sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}} | ||
\sum\limits_{m_\omega=-J_\omega}^{J_\omega} | \sum\limits_{m_\omega=-J_\omega}^{J_\omega} | ||
| − | + | D_{m_X m_{b_1}}^{L_X *}(\theta_X,\phi_X,0) | |
D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0) | D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0) | ||
</math></td> | </math></td> | ||
| Line 59: | Line 59: | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
I_{b_1} & I_\pi & I_X \\ | I_{b_1} & I_\pi & I_X \\ | ||
| − | I_{ | + | I_{zb_1^+} & I_{z\pi^-} & I_{zb_1^+}+I_{z\pi^-} |
\end{array}\right) | \end{array}\right) | ||
</math></td> | </math></td> | ||
| Line 70: | Line 70: | ||
\sum\limits_{L_{b_1}=0}^{2} | \sum\limits_{L_{b_1}=0}^{2} | ||
\sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}} | \sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}} | ||
| − | \sum\limits_{\ | + | \sum\limits_{L_{\pi^+\pi^-},L_\omega=1,3} |
| − | D_{m_\omega \ | + | \sum\limits_{m_{\pi^+\pi^-}=-L_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}} |
| − | Y_{\ | + | u^{L_\omega} v^{L_{\pi^+\pi^-}} |
| + | </math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
| + | D_{m_\omega m_{\pi^+\pi^-}}^{J_\omega *}(\theta_\omega,\phi_\omega,0) | ||
| + | Y_{m_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}(\theta_\rho,\phi_\rho) | ||
</math></td> | </math></td> | ||
<td> | <td> | ||
two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions, | two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions, | ||
| − | currently modeled as <math>L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1= | + | currently modeled as <math>L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=L_{\pi^+\pi^-}</math> |
</td> | </td> | ||
</tr> | </tr> | ||
| Line 86: | Line 92: | ||
\end{array}\right) | \end{array}\right) | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| − | + | L_\omega & L_{\pi^+\pi^-} & J_\omega \\ | |
| − | 0 & \ | + | 0 & m_{\pi^+\pi^-} & m_\omega |
\end{array}\right) | \end{array}\right) | ||
</math></td> | </math></td> | ||
| Line 96: | Line 102: | ||
<tr> | <tr> | ||
<td><math> | <td><math> | ||
| − | |||
| − | |||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| − | + | I_\pi & 1 & 0 \\ | |
| − | + | I_{\pi^0} & 0 & 0 | |
\end{array}\right) | \end{array}\right) | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| − | I_{\pi} & I_{\pi} & | + | I_{\pi} & I_{\pi} & 1 \\ |
| − | + | + | I_{z\pi^+} & I_{z\pi^-} & 0 |
\end{array}\right) | \end{array}\right) | ||
</math></td> | </math></td> | ||
Revision as of 20:20, 14 July 2011
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{}^{J_X L_X P_X}= } |
defining an amplitude... |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{m_X=-L_X}^{L_X} \sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}} \sum\limits_{m_\omega=-J_\omega}^{J_\omega} D_{m_X m_{b_1}}^{L_X *}(\theta_X,\phi_X,0) D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0) } |
angular distributions two-body X and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 (J_{b_1}^{PC}=1^{+-})} decays |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ P_X(-)^{J_X+1+\epsilon} e^{2i\alpha} \left(\begin{array}{cc|c} J_{b_1} & L_X & J_X \\ m_{b_1} & m_X & -1 \end{array}\right) + \left(\begin{array}{cc|c} J_{b_1} & L_X & J_X \\ m_{b_1} & m_X & +1 \end{array}\right) \right] } |
resonance helicity sum: ε=0 (1) for x (y) polarization; Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_X} is the parity of the resonance |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{1+(-)^\epsilon \eta}{4}\right) } |
polarization term: η is the polarization fraction |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^{L_X} q^{L_{b_1}} } |
k, q are breakup momenta for the resonance and isobar, respectively |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} I_{b_1} & I_\pi & I_X \\ I_{zb_1^+} & I_{z\pi^-} & I_{zb_1^+}+I_{z\pi^-} \end{array}\right) } |
Clebsch-Gordan coefficients for isospin sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 \oplus \pi^- \rightarrow X} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{L_{b_1}=0}^{2} \sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}} \sum\limits_{L_{\pi^+\pi^-},L_\omega=1,3} \sum\limits_{m_{\pi^+\pi^-}=-L_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}} u^{L_\omega} v^{L_{\pi^+\pi^-}} } | |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{m_\omega m_{\pi^+\pi^-}}^{J_\omega *}(\theta_\omega,\phi_\omega,0) Y_{m_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}(\theta_\rho,\phi_\rho) } |
two-stage Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega (J_\omega^{PC}=1^{--})} breakup angular distributions, currently modeled as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=L_{\pi^+\pi^-}} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} J_\omega & L_{b_1} & J_{b_1} \\ m_\omega & m_{L_{b_1}} & m_{b_1} \end{array}\right) \left(\begin{array}{cc|c} L_\omega & L_{\pi^+\pi^-} & J_\omega \\ 0 & m_{\pi^+\pi^-} & m_\omega \end{array}\right) } |
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays. |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} I_\pi & 1 & 0 \\ I_{\pi^0} & 0 & 0 \end{array}\right) \left(\begin{array}{cc|c} I_{\pi} & I_{\pi} & 1 \\ I_{z\pi^+} & I_{z\pi^-} & 0 \end{array}\right) } |
Clebsch-Gordan coefficients for isospin sums: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega} |