Difference between revisions of "Amplitudes for the Exotic b1π Decay"
Senderovich (talk | contribs) |
Senderovich (talk | contribs) |
||
| Line 60: | Line 60: | ||
</math> | </math> | ||
| − | where ''a=1'' and ''b=2'', referring to the daughter number. Because an even-symmetric angular wave function (i.e. ''L=0,2...'') imply that 180 degree rotation is equivalent to reversal of daughter identities | + | where ''a=1'' and ''b=2'', referring to the daughter number. Because an even-symmetric angular wave function (i.e. ''L=0,2...'') imply that 180 degree rotation is equivalent to reversal of daughter identities (''a,b'' becoming ''b,a'') one must write down the symmetrized expression: |
<math> | <math> | ||
C(L)=\frac{1}{\sqrt{2}} \left[ C^{a,b} + (-1)^L C^{b,a} \right] | C(L)=\frac{1}{\sqrt{2}} \left[ C^{a,b} + (-1)^L C^{b,a} \right] | ||
</math> | </math> | ||
| − | |||
== Application == | == Application == | ||
Revision as of 01:39, 12 August 2011
General Relations
Angular Distribution of Two-Body Decay
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega=(\phi,\theta)} . We can also describe the angular momentum between the daughters as being L and spin sum as s. Alternatively, we will label the daughters as having helicities of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_2} - projections on the direction of decay (specified by daughter 1)
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega \lambda_1 \lambda_2 | U | J m \rangle = \sum_{L,S} \langle \Omega \lambda_1 \lambda_2 | J m \lambda_1 \lambda_2 \rangle \langle J m \lambda_1 \lambda_2 | J m L S \rangle \langle J m L S | U | J m \rangle } |
simple insertion of complete sets of states for recoupling |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sum_{L,S} \left[ \sqrt{\frac{2J+1}{4\pi}} D_{m \lambda}^{J *}(\Omega,0) \right] \left[ \sqrt{\frac{2L+1}{2J+1}} \left(\begin{array}{cc|c} L & S & J \\ 0 & \lambda & \lambda \end{array}\right) \left(\begin{array}{cc|c} S_1 & S_2 & S \\ \lambda_1 & -\lambda_2 & \lambda \end{array}\right) \right] a_{L S}^{J} } |
Substitution of each bra-ket with their respective formulae. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=\lambda_1-\lambda_2} Note that in the event of one daughter being spin-less, the second Clebsch-Gordan coefficient is 1 |
Isospin Projections
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C^{a,b} = \left(\begin{array}{cc|c} I^a & I^b & I \\ I_z^a & I_z^b & I_z^a+I_z^b \end{array}\right) }
where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities (a,b becoming b,a) one must write down the symmetrized expression:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(L)=\frac{1}{\sqrt{2}} \left[ C^{a,b} + (-1)^L C^{b,a} \right] }
Application
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_X 0 \lambda_{b_1} | U_X | J_X m_X \rangle =\sum_{L_X} \left[ \sqrt{\frac{2J_X+1}{4\pi}} D_{m_X \lambda_{b_1}}^{J_X *}(\Omega_X,0) \right] \left[ \sqrt{\frac{2L_X+1}{2J_X+1}} \left(\begin{array}{cc|c} L_X & 1 & J_X \\ 0 & \lambda_{b_1} & \lambda_{b_1} \end{array}\right) \right] a_{L_X}^{J_X} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_{b_1} 0 \lambda_\omega | U_{b_1} | 1 , m_{b_1}=\lambda_{b_1} \rangle =\sum_{L_{b_1}} \left[ \sqrt{\frac{2J_{b_1}+1}{4\pi}} D_{m_{b_1}=\lambda_{b_1} \lambda_\omega}^{1 *}(\Omega_{b_1},0) \right] \left[ \sqrt{\frac{2L_{b_1}+1}{2J_{b_1}+1}} \left(\begin{array}{cc|c} L_{b_1} & 1 & 1 \\ 0 & \lambda_\omega & \lambda_\omega \end{array}\right) \right] b_{L_{b_1}} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_\omega 0 \lambda_\rho | U_\omega | 1 , m_\omega=\lambda_\omega \rangle =\sum_{L_\omega J_\rho} \left[ \sqrt{\frac{2J_\omega+1}{4\pi}} D_{m_\omega=\lambda_\omega \lambda_\rho}^{1 *}(\Omega_\omega,0) \right] \left[ \sqrt{\frac{2L_\omega+1}{2J_\omega+1}} \left(\begin{array}{cc|c} L_\omega & 1 & 1 \\ 0 & \lambda_\rho & \lambda_\rho \end{array}\right) \right] c_{L_\omega J_\rho} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_\rho 0 \lambda_\rho | U_\rho | J_\rho , m_\rho=\lambda_\rho \rangle =\sum_{L_\rho} \left[ \sqrt{\frac{2J_\rho+1}{4\pi}} D_{m_\rho 0}^{J_\rho *}(\Omega_\rho,0) \right] \left[ \sqrt{\frac{2L_\rho+1}{2J_\rho+1}} \left(\begin{array}{cc|c} L_\rho & 0 & J_\rho \\ 0 & 0 & 0 \end{array}\right) \right] d_{L_\rho} =\sum_{L_\rho} \sqrt{\frac{2L_\rho+1}{4\pi}} Y_{m_\rho}^{J_\rho *}(\Omega_\rho) d_{L_\rho} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{J_X}=\sum_{\lambda_{b_1},\lambda_\omega,\lambda_\rho} \langle \Omega_X 0 \lambda_{b_1} | U | J_X m_X \rangle C_X(L_X) k^{L_X} \langle \Omega_{b_1} 0 \lambda_\omega | U | 1 , m_{b_1}=\lambda_{b_1} \rangle C_{b_1}(L_{b_1}) q^{L_{b_1}} \langle \Omega_\omega 0 \lambda_\rho | U | 1 , m_\omega=\lambda_\omega \rangle C_\omega(L_\omega) u^{L_\omega} \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho} }