Difference between revisions of "Amplitudes for the Exotic b1π Decay"
| Line 13: | Line 13: | ||
U | J m \rangle | U | J m \rangle | ||
</math> | </math> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
We can also describe the angular momentum between the daughters as being ''L'' and their spin sum as ''s''. Alternatively, we will label the daughters as having helicities of <math>\lambda_1</math> and <math>\lambda_2</math> - projections of the two particles' spins onto their respective momentum directions. | We can also describe the angular momentum between the daughters as being ''L'' and their spin sum as ''s''. Alternatively, we will label the daughters as having helicities of <math>\lambda_1</math> and <math>\lambda_2</math> - projections of the two particles' spins onto their respective momentum directions. | ||
<tr> | <tr> | ||
Revision as of 19:29, 12 August 2011
General Relations
Angular Distribution of Two-Body Decay
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state for having daughter 1 with momentum direction Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega=(\phi,\theta)} in the center of mass reference frame, and helicity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_1} , while daughter 2 has direction Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\Omega=(\phi+\pi,\pi-\theta)} and helicity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_2} .
Let U be the decay operator from the initial state into the given 2-body final state. Intermediate between the at-rest initial state of qn J,m and the final plane-wave state is a basis of outgoing waves describing the outgoing 2-body state in a basis of good J,m and helicities. Insertion of the complete set of intermediate basis vectors, and summing over all intermediate J,m gives
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega \lambda_1 \lambda_2 | U | J m \rangle = \langle \Omega \lambda_1 \lambda_2 | J m \lambda_1 \lambda_2 \rangle \langle J m \lambda_1 \lambda_2 | U | J m \rangle }
We can also describe the angular momentum between the daughters as being L and their spin sum as s. Alternatively, we will label the daughters as having helicities of and - projections of the two particles' spins onto their respective momentum directions.
insertion of the complete LS basis set
Substitution of each bra-ket with their respective formulae. Note that in the event of one daughter being spin-less, the second Clebsch-Gordan coefficient is 1
Isospin Projections
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities (a,b becoming b,a) one must write down the symmetrized expression:
Application
Production
Photon-Reggeon-Resonance vertex
Consider the production of the resonance from the photon and reggeon in the reflectivity basis, the eigenstates of the reflectivity operator. (This operator is a combination of parity and rotation about the normal to the production plane (usually y axis.)
The eigenstates of the reflectivity operator are formed as follows:
such that
The photon linear polarization states turn out to be eigenstates of reflectivity as well:
Let x (y) polarization states be denoted with - (+)
Since the production Hamiltonian should commute with reflectivity:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle J m \epsilon|\mathbb{R}^{-1} V \mathbb{R}| \mp ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle = \epsilon (\mp 1) \epsilon_R \langle J m \epsilon|V| \mp ; J_R \lambda_R \epsilon_R ; t, s; \Omega_0 \rangle }
Acting with the reflectivity operator on initial and final state brings out the reflectivity eigenvalues of the
resonance, photon and reggeon. This result leads to a constraint:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \mp \epsilon_R}
Proton-Reggeon vertex
The amplitude of target proton's emission of an exchange particle, a reggeon, in particular direction and helicity projections can be written as:
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_R ; J_R \lambda_R \epsilon_R; J_P \lambda_p | W | J_T m_T \rangle = \langle \Omega_R ; J_R \lambda_R \; \mp\epsilon; \textstyle{\frac{1}{2}}\;\lambda_p | \textstyle{\frac{1}{2}}\;m_T \lambda_R \lambda_p \rangle \langle \textstyle{\frac{1}{2}}\;m_T \lambda_R \lambda_p | W | \textstyle{\frac{1}{2}}\;m_T \rangle } |
transition amplitude for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \rightarrow R + p'} in the direction Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega_R} w.r.t. the coordinate system defined in the resonance RF. |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{\sqrt{2\pi}} \left[ D_{m_T (\lambda_R-\lambda_p)}^{\frac{1}{2} *} (\Omega_R,0) \; w_{\lambda_R\; \lambda_p} \mp \epsilon P_R (-1)^{J_R-\lambda_R} D_{m_T (-\lambda_R-\lambda_p)}^{\frac{1}{2} *} (\Omega_R,0) \; w_{\lambda_R\; -\lambda_p} \right] } |
follows from relations given above |
Decay
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_X 0 \lambda_{b_1} | U_X | J_X m_X \rangle =\sum_{L_X} \left[ \sqrt{\frac{2J_X+1}{4\pi}} D_{m_X \lambda_{b_1}}^{J_X *}(\Omega_X,0) \right] \left[ \sqrt{\frac{2L_X+1}{2J_X+1}} \left(\begin{array}{cc|c} L_X & 1 & J_X \\ 0 & \lambda_{b_1} & \lambda_{b_1} \end{array}\right) \right] a_{L_X}^{J_X} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_{b_1} 0 \lambda_\omega | U_{b_1} | 1 , m_{b_1}=\lambda_{b_1} \rangle =\sum_{L_{b_1}} \left[ \sqrt{\frac{2J_{b_1}+1}{4\pi}} D_{m_{b_1}=\lambda_{b_1} \lambda_\omega}^{1 *}(\Omega_{b_1},0) \right] \left[ \sqrt{\frac{2L_{b_1}+1}{2J_{b_1}+1}} \left(\begin{array}{cc|c} L_{b_1} & 1 & 1 \\ 0 & \lambda_\omega & \lambda_\omega \end{array}\right) \right] b_{L_{b_1}} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_\omega 0 \lambda_\rho | U_\omega | 1 , m_\omega=\lambda_\omega \rangle =\sum_{L_\omega J_\rho} \left[ \sqrt{\frac{2J_\omega+1}{4\pi}} D_{m_\omega=\lambda_\omega \lambda_\rho}^{1 *}(\Omega_\omega,0) \right] \left[ \sqrt{\frac{2L_\omega+1}{2J_\omega+1}} \left(\begin{array}{cc|c} L_\omega & 1 & 1 \\ 0 & \lambda_\rho & \lambda_\rho \end{array}\right) \right] c_{L_\omega J_\rho} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_\rho 0 \lambda_\rho | U_\rho | J_\rho , m_\rho=\lambda_\rho \rangle =\sum_{L_\rho} \left[ \sqrt{\frac{2J_\rho+1}{4\pi}} D_{m_\rho 0}^{J_\rho *}(\Omega_\rho,0) \right] \left[ \sqrt{\frac{2L_\rho+1}{2J_\rho+1}} \left(\begin{array}{cc|c} L_\rho & 0 & J_\rho \\ 0 & 0 & 0 \end{array}\right) \right] d_{L_\rho} =\sum_{L_\rho} \sqrt{\frac{2L_\rho+1}{4\pi}} Y_{m_\rho}^{J_\rho *}(\Omega_\rho) d_{L_\rho} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{J_X}=\sum_{\lambda_{b_1},\lambda_\omega,\lambda_\rho} \langle \Omega_X 0 \lambda_{b_1} | U_X | J_X m_X \rangle C_X(L_X) k^{L_X} \langle \Omega_{b_1} 0 \lambda_\omega | U_{b_1} | 1 , m_{b_1}=\lambda_{b_1} \rangle C_{b_1}(L_{b_1}) q^{L_{b_1}} \langle \Omega_\omega 0 \lambda_\rho | U_\omega | 1 , m_\omega=\lambda_\omega \rangle C_\omega(L_\omega) u^{L_\omega} \langle \Omega_\rho 0 \lambda_\rho | U_\rho | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho} }