Difference between revisions of "Amplitudes for the Exotic b1π Decay"
Senderovich (talk | contribs) m |
Senderovich (talk | contribs) (→NEW) |
||
| Line 62: | Line 62: | ||
</math> | </math> | ||
| − | where ''a=1'' and ''b=2'', referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities, ''a,b'' becoming ''b,a'' on must write down the symmetrized expression: | + | where ''a=1'' and ''b=2'', referring to the daughter number. Because an even-symmetric angular wave function (i.e. ''L=0,2...'') imply that 180 degree rotation is equivalent to reversal of daughter identities, ''a,b'' becoming ''b,a'' on must write down the symmetrized expression: |
<math> | <math> | ||
| Line 130: | Line 130: | ||
| + | <math> | ||
| + | A^{J_X}=\sum_{\lambda_{b_1},\lambda_\omega,\lambda_\rho} | ||
| + | \langle \Omega_X 0 \lambda_{b_1} | U | J_X m_X \rangle C_X k^{L_X} | ||
| + | \langle \Omega_{b_1} 0 \lambda_\omega | U | 1 , m_{b_1}=\lambda_{b_1} \rangle C_{b_1} q^{L_{b_1}} | ||
| + | \langle \Omega_\omega 0 \lambda_\rho | U | 1 , m_\omega=\lambda_\omega \rangle C_\omega u^{L_\omega} | ||
| + | \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho v^{L_\rho} | ||
| + | </math> | ||
= OLD = | = OLD = | ||
Revision as of 05:04, 28 July 2011
NEW
General Relations
Angular Distribution of Two-Body Decay
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega=(\phi,\theta)} . We can also describe the angular momentum between the daughters as being L and spin sum as s. Alternatively, we will label the daughters as having helicities of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_2} or direction of decay (specified by daughter 1) of
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega \lambda_1 \lambda_2 | U | J m \rangle = \sum_{L,S} \langle \Omega \lambda_1 \lambda_2 | J m \lambda_1 \lambda_2 \rangle \langle J m \lambda_1 \lambda_2 | J m L S \rangle \langle J m L S | U | J m \rangle } |
simple insertion of complete sets of states for recoupling |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sum_{L,S} \left[ \sqrt{\frac{2J+1}{4\pi}} D_{m \lambda}^{J *}(\Omega,0) \right] \left[ \sqrt{\frac{2L+1}{2J+1}} \left(\begin{array}{cc|c} L & S & J \\ 0 & \lambda & \lambda \end{array}\right) \left(\begin{array}{cc|c} S_1 & S_2 & S \\ \lambda_1 & -\lambda_2 & \lambda \end{array}\right) \right] a_{L S}^{J} } |
Substitution of each bra-ket with their respective formulae. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=\lambda_1-\lambda_2} Note that in the event of one daughter being spin-less, the second Clebsch-Gordan coefficient is 1 |
Isospin Projections
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C^{a,b} = \left(\begin{array}{cc|c} I^a & I^b & I \\ I_z^a & I_z^b & I_z^a+I_z^b \end{array}\right) }
where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities, a,b becoming b,a on must write down the symmetrized expression:
Application
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_X 0 \lambda_{b_1} | U | J_X m_X \rangle =\sum_{L_X} \left[ \sqrt{\frac{2J_X+1}{4\pi}} D_{m_X \lambda_{b_1}}^{J_X *}(\Omega_X,0) \right] \left[ \sqrt{\frac{2L_X+1}{2J_X+1}} \left(\begin{array}{cc|c} L_X & 1 & J \\ 0 & \lambda_{b_1} & \lambda_{b_1} \end{array}\right) \right] a_{L_X}^{J_X} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_{b_1} 0 \lambda_\omega | U | 1 , m_{b_1}=\lambda_{b_1} \rangle =\sum_{L_{b_1}} \left[ \sqrt{\frac{2J_{b_1}+1}{4\pi}} D_{m_{b_1}=\lambda_{b_1} \lambda_\omega}^{1 *}(\Omega_{b_1},0) \right] \left[ \sqrt{\frac{2L_{b_1}+1}{2J_{b_1}+1}} \left(\begin{array}{cc|c} L_{b_1} & 1 & 1 \\ 0 & \lambda_\omega & \lambda_\omega \end{array}\right) \right] b_{L_{b_1}} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_\omega 0 \lambda_\rho | U | 1 , m_\omega=\lambda_\omega \rangle =\sum_{L_\omega J_\rho} \left[ \sqrt{\frac{2J_\omega+1}{4\pi}} D_{m_\omega=\lambda_\omega \lambda_\rho}^{1 *}(\Omega_\omega,0) \right] \left[ \sqrt{\frac{2L_\omega+1}{2J_\omega+1}} \left(\begin{array}{cc|c} L_\omega & 1 & 1 \\ 0 & \lambda_\rho & \lambda_\rho \end{array}\right) \right] c_{L_\omega J_\rho} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle =\sum_{L_\rho} \left[ \sqrt{\frac{2J_\rho+1}{4\pi}} D_{m_\rho 0}^{J_\rho *}(\Omega_\rho,0) \right] \left[ \sqrt{\frac{2L_\rho+1}{2J_\rho+1}} \left(\begin{array}{cc|c} L_\rho & 0 & J_\rho \\ 0 & 0 & 0 \end{array}\right) \right] d_{L_\rho} =\sum_{L_\rho} \sqrt{\frac{2L_\rho+1}{2J_\rho+1}} Y_{m_\rho}^{J_\rho *}(\Omega_\rho) d_{L_\rho} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{J_X}=\sum_{\lambda_{b_1},\lambda_\omega,\lambda_\rho} \langle \Omega_X 0 \lambda_{b_1} | U | J_X m_X \rangle C_X k^{L_X} \langle \Omega_{b_1} 0 \lambda_\omega | U | 1 , m_{b_1}=\lambda_{b_1} \rangle C_{b_1} q^{L_{b_1}} \langle \Omega_\omega 0 \lambda_\rho | U | 1 , m_\omega=\lambda_\omega \rangle C_\omega u^{L_\omega} \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho v^{L_\rho} }
OLD
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{}^{J_X L_X P_X}= } |
defining an amplitude... |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{m_X=-L_X}^{L_X} \sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}} \sum\limits_{m_\omega=-J_\omega}^{J_\omega} D_{m_X m_{b_1}}^{L_X *}(\theta_X,\phi_X,0) D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0) } |
angular distributions two-body X and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 (J_{b_1}^{PC}=1^{+-})} decays |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ P_X(-)^{J_X+1+\epsilon} e^{2i\alpha} \left(\begin{array}{cc|c} J_{b_1} & L_X & J_X \\ m_{b_1} & m_X & -1 \end{array}\right) + \left(\begin{array}{cc|c} J_{b_1} & L_X & J_X \\ m_{b_1} & m_X & +1 \end{array}\right) \right] } |
resonance helicity sum: ε=0 (1) for x (y) polarization; Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_X} is the parity of the resonance |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{1+(-)^\epsilon \eta}{4}\right) } |
polarization term: η is the polarization fraction |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^{L_X} q^{L_{b_1}} } |
k, q are breakup momenta for the resonance and isobar, respectively |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} I_{b_1} & I_\pi & I_X \\ I_{zb_1^+} & I_{z\pi^-} & I_{zb_1^+}+I_{z\pi^-} \end{array}\right) } |
Clebsch-Gordan coefficients for isospin sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1 \oplus \pi^- \rightarrow X} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{L_{b_1}=0}^{2} \sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}} \sum\limits_{L_{\pi^+\pi^-},L_\omega=1,3} \sum\limits_{m_{\pi^+\pi^-}=-L_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}} u^{L_\omega} v^{L_{\pi^+\pi^-}} } | |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{m_\omega m_{\pi^+\pi^-}}^{J_\omega *}(\theta_\omega,\phi_\omega,0) Y_{m_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}(\theta_\rho,\phi_\rho) } |
two-stage Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega (J_\omega^{PC}=1^{--})} breakup angular distributions, currently modeled as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=L_{\pi^+\pi^-}} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} J_\omega & L_{b_1} & J_{b_1} \\ m_\omega & m_{L_{b_1}} & m_{b_1} \end{array}\right) \left(\begin{array}{cc|c} L_\omega & L_{\pi^+\pi^-} & J_\omega \\ 0 & m_{\pi^+\pi^-} & m_\omega \end{array}\right) } |
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays. |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{cc|c} I_\pi & 1 & 0 \\ I_{\pi^0} & 0 & 0 \end{array}\right) \left(\begin{array}{cc|c} I_{\pi} & I_{\pi} & 1 \\ I_{z\pi^+} & I_{z\pi^-} & 0 \end{array}\right) } |
Clebsch-Gordan coefficients for isospin sums: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega} |