|
|
| Line 65: |
Line 65: |
| | | | |
| | <math> | | <math> |
| − | C=\frac{1}{\sqrt{2}} \left[ C^{a,b} + (-1)^L C^{b,a} \right] | + | C(L)=\frac{1}{\sqrt{2}} \left[ C^{a,b} + (-1)^L C^{b,a} \right] |
| | </math> | | </math> |
| | | | |
| Line 77: |
Line 77: |
| | \left[ \sqrt{\frac{2L_X+1}{2J_X+1}} | | \left[ \sqrt{\frac{2L_X+1}{2J_X+1}} |
| | \left(\begin{array}{cc|c} | | \left(\begin{array}{cc|c} |
| − | L_X & 1 & J \\ | + | L_X & 1 & J_X \\ |
| | 0 & \lambda_{b_1} & \lambda_{b_1} | | 0 & \lambda_{b_1} & \lambda_{b_1} |
| | \end{array}\right) | | \end{array}\right) |
| Line 132: |
Line 132: |
| | <math> | | <math> |
| | A^{J_X}=\sum_{\lambda_{b_1},\lambda_\omega,\lambda_\rho} | | A^{J_X}=\sum_{\lambda_{b_1},\lambda_\omega,\lambda_\rho} |
| − | \langle \Omega_X 0 \lambda_{b_1} | U | J_X m_X \rangle C_X k^{L_X} | + | \langle \Omega_X 0 \lambda_{b_1} | U | J_X m_X \rangle C_X(L_X) k^{L_X} |
| − | \langle \Omega_{b_1} 0 \lambda_\omega | U | 1 , m_{b_1}=\lambda_{b_1} \rangle C_{b_1} q^{L_{b_1}} | + | \langle \Omega_{b_1} 0 \lambda_\omega | U | 1 , m_{b_1}=\lambda_{b_1} \rangle C_{b_1}(L_{b_1}) q^{L_{b_1}} |
| − | \langle \Omega_\omega 0 \lambda_\rho | U | 1 , m_\omega=\lambda_\omega \rangle C_\omega u^{L_\omega} | + | \langle \Omega_\omega 0 \lambda_\rho | U | 1 , m_\omega=\lambda_\omega \rangle C_\omega(L_\omega) u^{L_\omega} |
| − | \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho v^{L_\rho} | + | \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho} |
| | </math> | | </math> |
| | | | |
Revision as of 14:30, 29 July 2011
NEW
General Relations
Angular Distribution of Two-Body Decay
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega=(\phi,\theta)}
.
We can also describe the angular momentum between the daughters as being L and spin sum as s. Alternatively, we will label the daughters as having helicities of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_1}
and
or direction of decay (specified by daughter 1) of
 |
simple insertion of complete sets of states for recoupling
|
![{\displaystyle =\sum _{L,S}\left[{\sqrt {\frac {2J+1}{4\pi }}}D_{m\lambda }^{J*}(\Omega ,0)\right]\left[{\sqrt {\frac {2L+1}{2J+1}}}\left({\begin{array}{cc|c}L&S&J\\0&\lambda &\lambda \end{array}}\right)\left({\begin{array}{cc|c}S_{1}&S_{2}&S\\\lambda _{1}&-\lambda _{2}&\lambda \end{array}}\right)\right]a_{LS}^{J}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a93b86e837aee85c12249ab0f791a8c2693e53e6) |
Substitution of each bra-ket with their respective formulae.
Note that in the event of one daughter being spin-less, the second
Clebsch-Gordan coefficient is 1
|
Isospin Projections
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities, a,b becoming b,a on must write down the symmetrized expression:
Application
OLD
 |
defining an amplitude...
|
 |
angular distributions two-body X and decays
|
![{\displaystyle \left[P_{X}(-)^{J_{X}+1+\epsilon }e^{2i\alpha }\left({\begin{array}{cc|c}J_{b_{1}}&L_{X}&J_{X}\\m_{b_{1}}&m_{X}&-1\end{array}}\right)+\left({\begin{array}{cc|c}J_{b_{1}}&L_{X}&J_{X}\\m_{b_{1}}&m_{X}&+1\end{array}}\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fded5277a8bfc72affb1262313d3388212337173) |
resonance helicity sum: ε=0 (1) for x (y) polarization; is the parity of the resonance
|
 |
polarization term: η is the polarization fraction
|
 |
k, q are breakup momenta for the resonance and isobar, respectively
|
 |
Clebsch-Gordan coefficients for isospin sum
|
 |
 |
two-stage breakup angular distributions,
currently modeled as
|
 |
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays.
|
 |
Clebsch-Gordan coefficients for isospin sums: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega}
|